IEOR 4500
 Maximizing the Sharpe ratio

Suppose we have the setting for a mean-variance portfolio optimization problem:

$$
\begin{align*}
\mu, & \text { the vector of mean returns } \tag{1}\\
Q, & \text { the covariance matrix } \tag{2}\\
\sum_{j} x_{j} & =1, \quad \text { (proportions add to } 1) \tag{3}\\
A x & \geq b, \quad \text { (other linear constraints). } \tag{4}\\
0 & \leq x . \tag{5}
\end{align*}
$$

Note that we can use inequalities (4) to represent, in a generic way, many constraints, including upper bounds on variables (constraints of the form $x_{j} \leq u_{j}$), as well as equations and general inequalities of the form " \leq ".

As an alternative to the standard mean-variance problem, we consider a different optimization task. Let r_{f} be the risk-free interest rate. Consider:

$$
\begin{equation*}
\operatorname{maximize} \frac{\mu^{T} x-r_{f}}{\sqrt{x^{T} Q x}} \tag{6}
\end{equation*}
$$

s.t.

$$
\begin{aligned}
& \sum_{j} x_{j}=1, \\
& A x \geq b . \\
& 0 \leq x .
\end{aligned}
$$

Problem (6) is difficult because of the nature of its objective. However, under a reasonable assumption, it can be reduced to a standard convex quadratic program.

The assumption we make is: there exists a vector x satisfying (3)-(5) such that

$$
\mu^{T} x-r_{f}>0 .
$$

This assumption is reasonable: it simply says that our universe of assets is able to beat the risk-free rate of return.

Our approach is as follows: given an asset vector x, define

$$
f(x)=\frac{\mu^{T} x-r_{f}}{\sqrt{x^{T} Q x}}
$$

Since $\sum_{j} x_{j}=1$,

$$
f(x)=\frac{\mu^{T} x-r_{f}}{\sqrt{x^{T} Q x}}=\frac{\mu^{T} x-r_{f} \sum_{j} x_{j}}{\sqrt{x^{T} Q x}}=\frac{\hat{\mu}^{T} x}{\sqrt{x^{T} Q x}}
$$

where for each index j, we define $\hat{\mu}_{j}=\mu_{j}-r_{f}$.
Using this fact, we note:
Observation: For any vector x with $\sum_{j} x_{j}=1$, and any scalar $\lambda>0, f(\lambda x)=f(x)$.
To see this, check that if we write $y=\lambda x$, then $\sqrt{y^{T} Q y}=\lambda \sqrt{x^{T} Q x}$, and similarly $\hat{\mu}^{T} y=\lambda \hat{\mu}^{T} x$.

Now we can state our optimization problem. Let \hat{A} be the matrix whose i, j-entry is

$$
a_{i j}-b_{i} .
$$

The problem we consider is:

$$
\begin{equation*}
\operatorname{maximize} \frac{1}{\sqrt{y^{T} Q y}} \tag{7}
\end{equation*}
$$

s.t.

$$
\begin{align*}
& \hat{\mu}^{T} y=1 \tag{8}\\
& \hat{A} y \geq 0 \tag{9}\\
& 0 \leq y \tag{10}
\end{align*}
$$

To see that problems (6) and (7) are indeed equivalent, suppose that \bar{y} is an optimal solution to (7). Notice that because of (8), \bar{y} is not identically zero, and so by (10), $\sum_{j} \bar{y}_{j}>0$. Define the vector

$$
\bar{x}=\frac{\bar{y}}{\sum_{j} \bar{y}_{j}} .
$$

Then, by construction,

$$
\sum_{j} \bar{x}_{j}=1 .
$$

Further, since y satisfies (9), then for any row i we have

$$
\sum_{j}\left(a_{i j}-b_{i}\right) \bar{y}_{j} \geq 0
$$

or in other words,

$$
\sum_{j} a_{i j} \bar{y}_{j} \geq\left(\sum_{j} \bar{y}_{j}\right) b_{i},
$$

and as a consequence,

$$
\sum_{j} a_{i j} \bar{x}_{j} \geq b_{i} .
$$

Therefore, \bar{x} is feasible for problem (6). Further, as we observed before, $f(\bar{x})=f(\bar{y})=$ $\frac{1}{\sqrt{y^{T} Q y}}$, since $\hat{\mu}^{T} \bar{y}=1$.
In summary: the value of problem (6) is at least as large as the value of problem (7). The converse is proved in a similar way. So, indeed, (6) and (7) are equivalent.

So we just have to solve (7). But this is clearly equivalent to:

$$
\begin{array}{ll}
& \text { minimize } y^{T} Q y \\
\text { s.t. } & \\
& \hat{\mu}^{T} y=1 \\
& \hat{A} y \geq 0 \\
& 0 \leq y
\end{array}
$$

which is just a standard quadratic program.

