
IEOR 4500
Maximizing the Sharpe ratio

Suppose we have the setting for a mean-variance portfolio optimization problem:

µ, the vector of mean returns (1)

Q, the covariance matrix (2)∑
j

xj = 1, (proportions add to 1) (3)

Ax ≥ b, (other linear constraints). (4)

0 ≤ x. (5)

Note that we can use inequalities (4) to represent, in a generic way, many constraints,
including upper bounds on variables (constraints of the form xj ≤ uj), as well as equations
and general inequalities of the form ′′ ≤′′.

As an alternative to the standard mean-variance problem, we consider a different optimiza-
tion task. Let rf be the risk-free interest rate. Consider:

maximize
µT x − rf√

xT Qx
(6)

s.t. ∑
j

xj = 1,

Ax ≥ b.

0 ≤ x.

Problem (6) is difficult because of the nature of its objective. However, under a reasonable
assumption, it can be reduced to a standard convex quadratic program.

The assumption we make is: there exists a vector x satisfying (3)-(5) such that

µT x − rf > 0.

This assumption is reasonable: it simply says that our universe of assets is able to beat the
risk-free rate of return.

Our approach is as follows: given an asset vector x, define

f(x) =
µT x − rf√

xT Qx
.
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Since
∑

j xj = 1,

f(x) =
µT x − rf√

xT Qx
=

µT x − rf
∑

j xj√
xT Qx

=
µ̂T x√
xT Qx

,

where for each index j, we define µ̂j = µj − rf .

Using this fact, we note:

Observation: For any vector x with
∑

j xj = 1, and any scalar λ > 0, f(λx) = f(x).

To see this, check that if we write y = λx, then
√

yT Qy = λ
√

xT Qx, and similarly

µ̂T y = λµ̂T x.

Now we can state our optimization problem. Let Â be the matrix whose i, j-entry is

aij − bi.

The problem we consider is:

maximize
1√

yT Qy
(7)

s.t.

µ̂T y = 1, (8)

Ây ≥ 0. (9)

0 ≤ y. (10)

To see that problems (6) and (7) are indeed equivalent, suppose that ȳ is an optimal solution
to (7). Notice that because of (8), ȳ is not identically zero, and so by (10),

∑
j ȳj > 0. Define

the vector

x̄ =
ȳ∑
j ȳj

.

Then, by construction, ∑
j

x̄j = 1.

Further, since y satisfies (9), then for any row i we have∑
j

(aij − bi)ȳj ≥ 0,

or in other words, ∑
j

aij ȳj ≥ (
∑
j

ȳj)bi,
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and as a consequence, ∑
j

aijx̄j ≥ bi.

Therefore, x̄ is feasible for problem (6). Further, as we observed before, f(x̄) = f(ȳ) =
1√

yT Qy
, since µ̂T ȳ = 1.

In summary: the value of problem (6) is at least as large as the value of problem (7). The
converse is proved in a similar way. So, indeed, (6) and (7) are equivalent.

So we just have to solve (7). But this is clearly equivalent to:

minimize yT Qy

s.t.

µ̂T y = 1,

Ây ≥ 0.

0 ≤ y,

which is just a standard quadratic program.
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