IEOR 4500 Maximizing the Sharpe ratio

Suppose we have the setting for a mean-variance portfolio optimization problem:

$$\mu$$
, the vector of mean returns (1)

$$Q$$
, the covariance matrix (2)

$$\sum_{j} x_{j} = 1, \text{ (proportions add to 1)}$$
(3)

$$Ax \ge b$$
, (other linear constraints). (4)

$$0 \leq x. \tag{5}$$

Note that we can use inequalities (4) to represent, in a generic way, many constraints, including upper bounds on variables (constraints of the form $x_j \leq u_j$), as well as equations and general inequalities of the form " \leq ".

As an alternative to the standard mean-variance problem, we consider a different optimization task. Let r_f be the risk-free interest rate. Consider:

maximize
$$\frac{\mu^T x - r_f}{\sqrt{x^T Q x}}$$
s.t.
$$\sum_j x_j = 1,$$

$$Ax \ge b.$$

$$0 < x.$$
(6)

Problem (6) is difficult because of the nature of its objective. However, under a reasonable assumption, it can be reduced to a standard convex quadratic program.

The assumption we make is: there exists a vector x satisfying (3)-(5) such that

$$\mu^T x - r_f > 0.$$

This assumption is reasonable: it simply says that our universe of assets is able to beat the risk-free rate of return.

Our approach is as follows: given an asset vector x, define

$$f(x) = \frac{\mu^T x - r_f}{\sqrt{x^T Q x}}.$$

Since $\sum_j x_j = 1$,

$$f(x) = \frac{\mu^T x - r_f}{\sqrt{x^T Q x}} = \frac{\mu^T x - r_f \sum_j x_j}{\sqrt{x^T Q x}} = \frac{\hat{\mu}^T x}{\sqrt{x^T Q x}},$$

where for each index j, we define $\hat{\mu}_j = \mu_j - r_f$.

Using this fact, we note:

Observation: For any vector x with $\sum_j x_j = 1$, and any scalar $\lambda > 0$, $f(\lambda x) = f(x)$.

To see this, check that if we write $y = \lambda x$, then $\sqrt{y^T Q y} = \lambda \sqrt{x^T Q x}$, and similarly $\hat{\mu}^T y = \lambda \hat{\mu}^T x.$

Now we can state our optimization problem. Let \hat{A} be the matrix whose i, j-entry is

$$a_{ij} - b_i$$

The problem we consider is:

maximize $\frac{1}{\sqrt{y^T Q y}}$ (7)

$$^{T}y = 1, \tag{8}$$

$$\hat{\mu}^T y = 1, \tag{8}$$

$$\hat{A}y \ge 0. \tag{9}$$

$$0 \le y. \tag{10}$$

To see that problems (6) and (7) are indeed equivalent, suppose that \bar{y} is an optimal solution to (7). Notice that because of (8), \bar{y} is not identically zero, and so by (10), $\sum_{j} \bar{y}_{j} > 0$. Define the vector

$$\bar{x} = \frac{\bar{y}}{\sum_j \bar{y}_j}$$

Then, by construction,

$$\sum_j \bar{x}_j = 1.$$

Further, since y satisfies (9), then for any row i we have

$$\sum_{j} (a_{ij} - b_i) \bar{y}_j \ge 0,$$

or in other words,

$$\sum_{j} a_{ij} \bar{y}_j \ge (\sum_{j} \bar{y}_j) b_i,$$

and as a consequence,

$$\sum_{j} a_{ij} \bar{x}_j \ge b_i.$$

Therefore, \bar{x} is feasible for problem (6). Further, as we observed before, $f(\bar{x}) = f(\bar{y}) = \frac{1}{\sqrt{y^T Q y}}$, since $\hat{\mu}^T \bar{y} = 1$.

In summary: the value of problem (6) is *at least* as large as the value of problem (7). The converse is proved in a similar way. So, indeed, (6) and (7) are equivalent.

So we just have to solve (7). But this is clearly equivalent to:

minimize
$$y^T Q y$$

s.t.
 $\hat{\mu}^T y = 1,$
 $\hat{A} y \ge 0.$
 $0 \le y,$

which is just a standard quadratic program.